indeterminate beam fixed by two hinged supports and concrete load calculate shear force diagram and bending moment diagram and deflection in matlab

main.m
% Define properties of the beam
L = 10; % Length of beam in meters
E = 200e9; % Young's modulus of the beam material in Pascal
I = 1.2e-5; % Moment of inertia of the beam in meter^4

% Load and support conditions
P = 1000; % Point load at 4 meters from the left end
w = 200; % Uniform load of 200 N/m along the entire beam length
a = 3; % Distance of the point load from the left end in meters

% Reaction forces
syms R1 R2

% Moment equations
M = @(x) R1*x - P*(x-a) - w*x^2/2;
M1 = M(a);
M2 = M(L);

eqn1 = R1 + R2 - P - w*L == 0; % Vertical equilibrium
eqn2 = M1 == 0; % Moment at left support

% Solve for reaction forces
[R1, R2] = solve([eqn1, eqn2], [R1, R2]);

% Shear force and bending moment equations
V = @(x) R1 - P*(x>=a) - w*x;
M = @(x) R1*x - P*(x-a) - w*x^2/2;

% Plot shear force diagram
figure;
fplot(V, [0, L]);
title('Shear Force Diagram');
xlabel('Beam Length (m)');
ylabel('Shear Force (N)');

% Plot bending moment diagram
figure;
fplot(M, [0, L]);
title('Bending Moment Diagram');
xlabel('Beam Length (m)');
ylabel('Bending Moment (Nm)');

% Calculating deflection
x = linspace(0, L, 100);
y = (1/(E*I)) * (R1/6*L^2*x - P/6*(x-a).^3 - w/24*x.^3 + C1*x + C2);
C1 = (P*a^2*(6*L-3*a) + w*L^4 - 6*R1*L^2)/(6*L*E*I);
C2 = - (P*a^3*(2*L-a) + w*L^3)/(6*L*E*I);

% Plotting deflection
figure;
plot(x, y);
title('Deflection of the Beam');
xlabel('Beam Length (m)');
ylabel('Deflection (m)');
1407 chars
55 lines

This MATLAB code provides step-by-step instructions for analyzing an indeterminate beam fixed by two hinged supports under various loads to calculate the shear force diagram, bending moment diagram, and deflection.

gistlibby LogSnag